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Cancellation of energy divergences in Coulomb gauge QCD
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Abstract. In the Coulomb gauge of non-abelian gauge theories there are in general, in individual graphs,
“energy divergences” on integrating over the loop energy variable for fixed loop momentum. These di-
vergences are avoided in the Hamiltonian, phase-space formulation. But, even in this formulation, energy
divergences re-appear at 2-loop order. We show in an example how these cancel between graphs as a con-
sequence of the Ward identities.

PACS. 11.15.Bt; 11.10.Gh

1 Introduction

In gauge theories, the Coulomb gauge has a special posi-
tion. The number of dynamical variables is the same as
the number of physical degrees of freedom. Moreover, if
we go to the Hamiltonian, phase-space, first-order formal-
ism, there are no ghosts; and, because of the existence of
a Hamiltonian, unitarity should be manifest.

Nevertheless, there are complications, if not problems,
with the Coulomb gauge. In the Lagrangian, second-order,
formalism, there are “energy divergences” in individual
Feynman graphs. These are divergences over the energy
integration,

∫
dp0, in a loop, for fixed values of the 3-

momentum p. These are difficult to regularize: dimen-
sional regularization does not touch them, and any other
regularization risks doing violence to gauge invariance
(but see Leibbrandt et al. for a modified form of di-
mensional regularization [1]). These energy divergences do
cancel when all graphs are combined [2]; but it makes one
uneasy in manipulating divergent and unregulated inte-
grals.

The problem of energy divergences is eased by going
to the Hamiltonian, phase-space, first-order formalism, in
which time derivatives of the gluon field A are eliminated
in favour of the conjugate momentum field E. This has
the advantage of being a true Hamiltonian formalism, and
unitarity should be manifestly obeyed. Also, there are no
ghosts (ghost loops cancel part of the closed Coulomb
loops). For a sample calculation in this formalism see [3],
and for a possible connection to confinement see [4].

But there are still problems. There is the question of
operator-ordering in the Hamiltonian [5] (see also [8,9]),
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which may require higher-order terms. It has been shown
[6,7] that these operator-ordering problems are connected
with ambiguous multiple energy integrals in higher orders.

In this paper, we are concerned with a simpler prob-
lem, which arises at 2-loop order. In general, in the Hamil-
tonian formalism to this order, the two integrals over the
internal energies converge with the two internal spatial
momenta held fixed. However, renormalization demands
that we first perform the energy and momentum integrals
for each subgraph, then make subtractions for ultraviolet
divergences, and then perform the remaining energy and
momentum integrals. With this sequence of operations,
one does in general find an energy divergence in the final
energy integral.

We illustrate this with a simple example in which
quark-loop subgraphs are inserted into the second-
order gluon self-energy graphs. We perform the energy-
momentum integral in the subgraph first, and then do the
renormalization subtraction. Individual graphs now have
energy divergences in the final energy integral, but these
cancel when graphs are combined. We show that the can-
cellation is a consequence of the Ward identities obeyed
by the quark-loop sub-diagrams.

Of course, it is reassuring to check that the energy di-
vergences do cancel. But we are back in the uncomfortable
position of having to handle divergent (and unregularized)
integrals at intermediate stages of the cancellation. This
contrasts with the Feynman gauge, where all integrals to
all orders are unambiguously regularized by dimensional
regularization.
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2 Notation, conventions and Feynman rules

Lorentz indices are denoted by Greek letters, spatial in-
dices by i, j, ..., and color indices by a, b, c, ... We use the
metric tensor gµν , where

g00 = 1, gij = −δij . (1)

Lorentz vectors are written

p = (p0; p), p2 = p2
0 − p2. (2)

We define the Lorentz tensor Gµν by

Gij = gij , G0µ = 0, (3)

and for any vector pµ we define the vector Pµ by

Pi = pi, P0 = 0, P 2 = −p2. (4)

(Of course, these definitions refer to the particular time-
like vector (1; 0, 0, 0) with respect to which we have chosen
to define the Coulomb gauge.) We define a spatial trans-
verse tensor T by

Tµν(p) = −Gµν +
PµPν

P 2 , (5)

so that
Tij(p) = δij − pipj

p2 , Tµ0 = 0. (6)

In terms of color matrices τa, Cq is defined by

tr(τaτb) = Cqδab, (7)

and in terms of the structure constants fabc, CG is defined
by

fabcfabc′ = CGδcc′ . (8)

The renormalized coupling constant is g. Quarks have
mass m.

We use dimensional regularization with spacetime di-
mension 4−2ε. The Lagrangian density in the phase-space
formalism is

L = −1
4
(F a

ij)
2 +

1
2
(Ea

i )2 − Ea
i F a

0i, (9)

where

Ea
i F a

0i = Ea
i [∂0A

a
i − ∂iA

a
0 − gfabcAb

0A
c
i ]. (10)

The Hamiltonian form of the Coulomb gauge has dy-
namical, conjugate fields A,E. The Coulomb potential A0
is not a dynamical variable. It could be eliminated, but we
find it convenient to leave it in the Feynman rules. We use
a continuous line to represent E, a dashed line for A and
a dotted line for A0. The propagators are not diagonal
in A,E, A0. The propagators are shown in Fig. 1 (the ar-
rows on the lines show the direction of the momentum k).
Only one vertex will be relevant to our calculation, the
one shown in Fig. 2.

Its value is
−gfabcGµν . (11)

In the Hamiltonian formalism, this is the only vertex in-
volving the Coulomb field. It is this feature which implies
there are no energy divergences to 1-loop order.

1
k2+i ηTµν(k)

µ ν

− 1
K2

K2

k2+i η
Tµν(k)

µ ν

i Kµ

K2

Eµ A0

EµA0 − i Kµ

K2

Eµ Aν i k0
k2+i ηTµν(k)

EνAµ − i k0
k2+i ηTµν(k)

Fig. 1. The Feynman rules for propagators in the Hamiltonian
Coulomb gauge. Continous lines represent E, dashed lines A
and dotted lines A0. The arrow indicates the sense of momen-
tum flow

Ab
0

Ea
ν

Ac
µ −g f abcGµν

Fig. 2. A vertex in the Hamiltonian Coulomb gauge

3 The quark-loop effective action
and Ward identities

We are going to insert quark loops into a gluon diagram,
so we need a notation for the quark 1-loop effective ac-
tion. Let the 2-gluon term in this effective action be (in
momentum space)

δabQµν(p) = δab(p2gµν − pµpν)Q(p2)(µ2)
−ε

. (12)

We will be required to know Q only for |p0| � |p|, m2. In
this region, we have

Q(p2) ∼ 8ig2Cqπ2−εΓ (ε)
Γ 2(2 − ε)
Γ (4 − 2ε)

×[(−p2
0 − iη)−ε − (µ2)−ε] (13)

(using minimal subtraction with a mass unit µ).
The 3-gluon term in the effective action will be denoted

by
ifabcΓµνλ(p, q, p′), (14)

where p+q+p′ = 0, and the quantum numbers of the three
gluons are p, µ, a; q, ν, b; p′, λ, c (all momenta are directed
into the vertex). We will not need to know the value of Γ
in general. Finally the 4-gluon term in the effective action
will be denoted as

W abcd
µν,λσ(p, q; k, r), (15)

where the quantum numbers are p, µ, a; q, ν, b; k, λ, c; r,
σ, d. Again, we do not need to know the value of W in
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general. Both Γ and W have the symmetries required for
Bose symmetry.

Note that the effective action due to quark loops is a
functional of Aµ and does not depend upon E. There are
terms in the effective action which involve the Coulomb
field A0, and this is the reason that energy divergences
re-appear. Renormalization requires also the presence of
counter-terms with a different structure from the interac-
tions in the original formalism.

The effective action obeys the following Ward identi-
ties:

pµΓµνλ(p, q, p′) = g[Qνλ(p′) − Qνλ(q)], (16)
pµWµνλσ(p, q; k, r) = −gfabefecdΓνλσ(p + q, k, r)

− gfacefedbΓλσν(p + k, q, r)
− gfadefebcΓσνλ(p + r, q, k). (17)

These identities express the gauge invariance of the quark-
loop contribution to the effective action. They are a special
case of the BRS identities (see for example equation (12-
144) of [10]) when there are no ghost contributions. We
shall show that these identities are sufficient to ensure the
cancellation of energy divergences between graphs.

4 The energy divergent graphs

The simplest example of the energy divergences occurs
in the gluon 2-point function, to 2-loop order. The rele-
vant graphs are shown in Fig. 3, where the thick circles
represent terms from the quark-loop effective action (in
(12), (14) and (15)). In Fig. 3(vi), the sum of the three
subgraphs shown corresponds to (15).

The contributions have the form (in the notation of
(4))

ig2δab

∫
d4−2εp

1
P 2 [J (i)

ij +J
(ii)
ij +J

(iii)
ij +J

(iv)
ij +J

(v)
ij +J

(vi)
ij ],

(18)
where the roman numbers correspond to the labels on the
diagrams.

We have

J
(i)
ij = CG

P ′
i

P ′2 Q00(p′)
P ′

j

P ′2 , (19)

J
(ii)
ij = CG

p′
0

p′2 + iη
Tiµ(p′)Qµν(p′)Tνj(p′)

p′
0

p′2 + iη
,

(20)

J
(iii)
ij = −CG

1
P ′2 PiQ00(p′)

P ′
j

P ′2 + (i ↔ j), (21)

J
(iv)
ij = CGΓiµ0(q, p′, p)

p′
0

p′2 + iη
Tµ

j (p′) + (i ↔ j),

(22)

J
(v)
ij = CGΓi00(q, p′, p)

P ′
j

P ′2 + (i ↔ j), (23)

J
(vi)
ij =

1
2
W00,ij(p, q). (24)

( i ) ( ii )

( iii ) ( iv )

( v ) ( vi )

p′

p

qq

Fig. 3. The graphs with energy divergences. The thick black
circles represent contributions from quark loops. The other
lines are defined in Fig. 2

The energy divergences come from the region of integra-
tion where

p0 � |p|, q0, |q|, m. (25)

To examine these divergences, we may use in (19), (20)
and (21):

Q00(p′) ∼ P ′2Q(p0), Qij ∼ Gijp
2
0Q(p0). (26)

We then see that (19), (20) and (21) are each divergent
as integrals over p0 for fixed p. (Actually, for ε > 0 this
is true only of the contribution from the subtraction term
in (13).) If we take the limit ε → 0 first, then we get a
double log energy divergence.

To find the behavior of the integrals in (22), (23) and
(24), it is sufficient to use the Ward identities (16) and
(17) in the large p0 limit. Then (16) gives

p0Γ0ij(p, q, p′) ∼ gQij(p) ∼ gGij(p)p2
0Q(p0). (27)

Also,

p2
0Γ00i(p, q, p′)

∼ pµp′νΓµνi − pµP ′jΓµji − p′νP jΓjνi (28)

= −g(P j − P ′j)Gijp
2
0Q(p0) = g(Pi − P ′

i )p
2
0Q(p0).

Similarly, (17) implies that

p2
0W

aacd
00,ij (p, −p, q, −q)

∼ p0gCGδcd[Γj0i(p, −p, 0) − Γij0(p, 0, −p)]

∼ 2g2CGGij(p)p2
0Q(p0)δcd, (29)

using (27) again.
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From (27), (28) and (29), we see that all the integrals
in (18) have energy divergences of the same kind, and the
divergent part has the form

ig2CGδab

∫
d3−2εp

1
P 2 dp0Q(p0)[K

(i)
ij + ... + K

(vi)
ij ], (30)

where

K
(i)
ij =

P ′
iP

′
j

P ′2 , (31)

K
(ii)
ij = −Tij(P ′), (32)

K
(iii)
ij = −PiP

′
j + PjP

′
i

P ′2 , (33)

K
(iv)
ij = 2Tij(P ′), (34)

K
(v)
ij =

(PiP
′
j + PjP

′
i )

P ′2 − 2
P ′

iP
′
j

P ′2 , (35)

K
(vi)
ij = Gij(P ′). (36)

These last six expressions cancel, so the energy divergences
in the separate terms in (18) cancel out in the sum.

Probably similar cancellations occur in two-loop
graphs made entirely of gluon lines. But in this case there
is the extra complication of the ambiguous integrals con-
nected to the Christ–Lee terms [6,7].
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